
L1~~~~flIPi~UU~~~1Ii1 ~~~~~
TI

Bolt Beranek and Newman Inc. ____

-
~~ Report No. 3540

TENEX MSG User Manual
Robert H. Thomas , Paul A. Johnson

April1977

Submitted to:
Defense Advanced Research Projects Agency

D DC

L~:~~~j B

Unclassified
SECU3L~ Y CLA SSIFICATION OF THIS PAGE (~~..n Da. EnI.~.d)

(

~~~ 

— READ INSTRUCTIONSREPORT DOCUMENTATIuri r~~u BEFORE COMPLETING FORM .
I. T HUM5~ ff 

— 
--—- . 2. GOVT ACCESSION NO I. RECSPSINT S CAT A I OG NUM•IR

BBN_~eport i~~...-354Ø \ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4. TITLE (aid SubSIIi.) I. TYPE OF NEPORT S PERIOD COVERED

Technical
~~~~~ TENEX MSG User Manual. 8/1/76 - 5/30/77 

L P FORMING ORG. REPORT NUMBER

7. ~~~~~~~~~~~~~~~ (
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Robert H. ‘Thomas (
~Y N00~i4-75-c-$773~

I

Paul R.JJohnson _ j -

~~~~~ 1’~ - — 
~~L L PERFORMING ORGANIZATION NAM E AND ADDRESS ~4. -kuu!IAM ELEMEHT. PROJ~~~?. TASK

4 Bolt Beranek and Newman Inc. -~ 
-

50 Moulton Street
Cambridge, Massachusetts 02132 ______________________

U G ? R O~~ j II.. U r PSCE ~~~1If-*wo-AeOI~EsS I2.J~~pQft~ nAY F(~
) 

~~~~~~~~~~~~~ ~: 
,

. . — .----——

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

/ — ~ J~~ / 28
.LA..-~uONtTQnIU. A 3B.. eT —— a~,U~~YYIi~ifl ~ua Controlling OWe.) II. SECURITY CLASS. (of tAil ,.port)

~~ Unclassified(/ 1 J) 15.. DECLASSIFICATION/OOWNGRA DING\~_~j_, - -
~~~~~

.- . .— SCHEDULE

IS. DISTRIBUTION STATEM ENT (of tAt. R.potl)

Distribution of thes document is unlimited . It may be released
to the Clearinghouse , Department of Commerce for sale to the
general public.

17. DISTRIBUTION STATEMENT (ol lb. .b.iracl .nS.r.d in Wi,cb 20. ii dill.,.nl ho. R.paie)

IS. SUPPLEMENTARY NOTES

This research was supported by the Defense Advanced Research
Projects Agency under ARPA Order No. 2935.

IS. ICEY W ORDS (Co.,IInu. on rev.,., aid. it n.~...av aid Identify by biocb nionb.r)

National Software Works Network operating systems
interprocess communication
TENEX Operating System

20. ABSTRACT (ContinuS an r.ra.. aid. ii n.c.iia~ aid IdwuI~
. by blocS no.5. ,)

This report describes the implementation of MSC, the inter-
process communication facility for the National Software Works
(NSW) system , for the TENEX operatinq system. It is intended as
a reference for programmers who use MSC and as a guide for those- - responsible for the opera tion of systems, such as NSW, which
uses MSG.

DD 
~~~~~~ 

1473 EOITION OF NOV 55 IS OBSOLETE Unclassi fied
—

.- SECURITY CLASS IFICATION OF YNIS PAGE (~~Ion 0.1. EM rodI

!

II!Pr

~

. .
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- . - — -.

B O L T  B E R A N E K  A N D  N E W M A N  I N C

C O N S U L T I N G  . D E V I L O P M  T • R E  S E  A R C  H

BBN Report No. 3540 April 1977

c~SSIO1I LI
TENEX MSC User Manual

hft~ ecIkn 0
0

JUSTIIICATI*....—--

U _.. ...... ~~ 
Lil~T1tltUHfl/AP*~ MIUfl co~a
ii. AVAIL. ii~j ~~ W~CIAL

Robert H. Thomas 

)_____Paul R. Johnson .. _____-

This work was supported by the Defense Advanced Research Projects
Agency of the Department of Defense and monitored by the Office
of Naval Research under Contract No. Nl~i0l4-75-C-t1773.

~ 

— -- .~~~~~~~—-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_____ -. .- --- -
~~~~~~~

J .LNLX MSG User Manua l A p r i l 1977

Con t e n t s

1. I n t r o d u c t i o n

2. lEN ~ X MSG Process I n t e rf a c e

2. 1 Genera l

2 .1.1 Cal l ing MSG p r i m i t i v e s
2. 1.2 P r i m i t i v e P a r a m e t e r s
2 .1 .3 Signals
2 .1 .4 Represen ta t ion of Si gna l s
2.1.5 Event Handles
2.1.6 Disposi t ions
2.1 .7 Process Name s
2.1 .8 Success and F a i l u r e of MSG Calls
2.1.9 The Unblock Signal
2 . 1. 10 Messages and TENEX Pages
2.1.11 Misce l laneous

2.2 TENEX MSG C alls

2 . 2 . 1 P r i m i t i v e s That Crea te Pending Events
2 . 2 .2 P r i m i t i v e s That Do Not Crea te Pen ding Events

3. MSG User I n t e r f a c e

3.1 Genera l

3.1.1 Manual S t a r t u p
3. 1.2 Au tomat i c S t a r t u p
3.1.3 I n t e r n a l MSG Se t t i ngs
3.1.4 C o n f i g u r a t i o n Con t ro l
3 .1.5 MSG ERRH Lrs
3.1.6 Abnorma l Process T e r m i n a t i o n
3. 1.7 l e r m i n a t i ng MSG Tasks

3.2 M o n i t o r i n g and C o n t r o l l i ng MSG Processes

A P P E N D IX

— i —

~~~~~~~~~~~~~~~~~~~~~~~ -.-——-~~ 
.. 

~~~~~~~~~ ~~~~ — -.---~ ~— ———..- — .. - — - --.-


__________ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
~~~ 

- . ----,- -.-----

~

-- . . - -  - -.

lEN E X MSG User Manual April 1977
a

1. introduction

This documen t descri bes from a user ’s point of view the
TENEX impl ementation of MSG , the interprocess communication
facility of the National Software Works (NSW) system . While MSG
was developed to satisfy the communication requirements of the
NSW system , i t  is our belief that  MSG is a genera l ly  u se fu l
interhost interprocess communication facility which is applicable
outs ide  of the NSW env i ronmen t .  This document is intended as a
reference for programmers who use MSG and as a guide for those
responsible for  operat ion of systems , such as NSW, which use MSG .

The document  should be regarded  as a TENE X — spec i f i c
companion to the MSG design spec i f ica t ion  (“MSG : The In terprocess
Communicat ion F a c i l i t y  for the Nat iona l  So f tware  Works ” , BBN
Report No. 3483 , MCA Document No. CADD—76l2—241l). The reader is
assumed to be familiar with the MSG design specification and , in
p a r t i c u l a r , wi th the semantics of the various MSG primitives
which w i l l  not be described h e r e .

The r emainder  of th i s  document is o rgan ized  as fo l lows :

Section 2 describes the i n t e r f a c e  to processes ( i . e . ,  TENE X
f o r k s )  supported by MSG . It can be regarded as an MSG
prog rammers guide for TENEX .

Section 3 descr ibes  the i n t e r f a c e  provided by MSG to huma n
users .  It descr ibes  how to d e f i n e  and run  MSG
c o n f i g u r a t i o n s, and how to use the MSG process m o n i t o r  and
d e b u g g e r .

The appendix specifies the error and disposition codes
returned to user processes by MSG .

— 1 —



-
~ 

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ —

~~~~~~~~
--- —

H
TENt~X iiS~ User ~4anual April 1977

2. TENEX MSG Process Interface

2.1 General

2.1.1. Calling MSG Primitives.

JS~S 215 is used to call MSG pr imitives. ACO is used to specify
the pr imitive desired (see Section 2.2) . If the contents of ACØ
are less than or equal to 0, then MSG will not interpret the call
as an t4SG primitive . Rather , MSG will allow normal execu tion of
JS~ S 215.

2.1.2. Primitive Parameters.

All of the primitives which create pending events are called with
AC 1 c o n t a i n i n g  the address (E) of a parameter block. The general
tormat of the parameter block is:

E: Primitive specific parameter
£+l: Byte pointer for name of source/ des tination process
E+2: Signal
E+3: Return disposition
E#4: ‘rimeout (in ms.)
E+5 — > £+n : Additional pr imitive specific parameters

it L+4 is zero a default value is used for the timeout; the
ue tault is currently very large (10 hours) . The value
377777777777 (octal) can be used to request an infinite timeout.

~ .1.3. S igna l s .

IENE X suppor ts  3 k i n d s  of signa l s :

Unblock: meaning the process relinquishes control when it
executes the pr imitive and remains suspended until the
pending event associated with the primitive has occurred at
which time it resume s execution .

P SI :  m e a n i n g  t h a t  the process re sume s execu tion af ter MSG crea tes
the pending  event associated with the primitive . When the
pending  event  occurs , MSG will generate a PSI on a channel
specified by the process.

Null: meaning that the process does not wish MSG to signal it
when the pending events occurs. When the even t occurs the
Uisposition will be delivered to the process but the process
w ill not be signalled . The process resumes execution after . .
MSG c r ea t e s  the pending event  associated with the primitive .

— 2 —  
& 

~~~-
._-~~~-~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~ - - ~~~~~~~~.-~~~~---~~~~~~

--. --
~~~



- ——— — .- - -  ~~~~~~~~~~ ~~~ .,

4

TENEX MSG User Manual April 1977

2.1.4. Representation of Signals.

A TENEX signal is represented by 24 bits , right justified in a 36
bit word. The format of the word is:

B0—Bll: zero: unused in the signal (but used in event
handles wh ich are crea ted from signals — see below)

B12—B17: Signal type : The currently defined signal types
are :

812—17 o f f :  Nul l
812 on: Unblock
B13 on: PSI

B18—B35: Signal data :
For Unblock and Null there is no data and B18—B35
should be zero.
For PSI the signal data is a PSI channel number.

2.1.5. Event Handles.

When a pr imitive that crea tes a pending even t is execu ted , MSG
re turns to the calling process an “event handle ” which the
process can use in MSG primi tives which manipulate pending events
(such as Rescind). The event handle is returned in the parameter
block at position E+2 (which is the position of the signal
parameter on the call).

Event handles are 36 bit quantities which are derived from
signals. The format of an event handle is:

Bø—Bll : Event identifier .
Bl2—B35: Signal associated with the event.

2.1.6. Dispositions.

A TENEX disposition is a 36 bit quantity . Zero is always used to
indicate the success disposition . Minus one (—1) is always used
to indicate that the disposition of the pr imitive has not yet
been determined (i.e., that the signal has not yet occurred). A
positive disposition indicates an unsuccessful pr imitive . The
forma t for posi tive di sposi tions is :

BO—Bl9: Zero
B20—B35: 16 bi t  code which indicates the reason the

pr imi tive was unsuccess ful (see Append ix for codes) .

— 3 —



—~~~~~~~~—- - 
~~
-.-—- -—- - •

~~~~~~•~~z ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~~~~~~~~~~~~~~~
— - -  

~~
-

~~~~~~~~~~
--—-.--

~~~~~~~~~~~~~~~~~~~~~~~~~

TENEX MSG User  Manual  A p r i l  1977

2 . 1. 7 .  Process Names .

A pr ocess name is represen ted by a sequen ce of 8 bit bytes (See
Section 5 of MSG Design Spec i f ica t ion  Document)  . The by tes are
packed 4 8—bi t  bytes per 36 bit word (left—justified ) and have
the f o r m a t .

Bytes 1,2: Host address ( r i g h t — j u s t i f i e d )
Bytes 3 ,4:  Host i nca rna t ion  * kBytes 5 , 6:  Process instance *Byte 7: Count
Bytes 8 — > n :  S t r i ng  of Count cha rac t e r s  which i d e n t i f y  a

gener ic  class.

For a g e n e r i c a l l y  addressed message (i.e., a message sent by the
SendGenericMessage primitive ) the Host incarnation * and Processinstance * must both be the special value “unspecified ” (=0)
the Host address may (but need not) have the value “unspecified ” .

2.1.8. Success and Failure of MSG calls.

A f ter an MSG pr imi tive is initiated (and comple ted , for those
pr im itives that do not create pending events) , MSG r e t u r n s
control to the calling process either at the location +1
(non—skip return) or +2 (skip return) relative to the location of
the pr i m i t i v e  ca l l .

The non—skip return is used whenever MSG is unable to
successfully execute the pr imitive . In this case MSG returns a
code which indicates the reason the pr imitive failed in AC2.
This failure code has the same format as a disposition (see
Section 2.1.6). For a primitive that creates a pending event ,
MSG w i l l  use the n o n — s k i p  r e t u r n  if i t  is unable  to create  the
pending event ;  for example , because the call parame ters are not
well formed .

For primitives that do not create pending events the skip return
is used to indicate that the pr imitive was successfully executed .
In genera l , for pr imitives that create pending events the skip
re turn is used to ind ica te that the pending even t was
successfully created . The success or failure of the pr imitive
will be supplied to the calling process as the disposition when
the signal associated with the pending event is generated by MSG .

I I  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~ ~- — -- -—h- :=~~~~ _ _ _ _ _ _ _ _

TEN EX MSG User  M a n u a l  A p r i l  1977

2.1.9. The Unblock Signal

when a process specifies an Unblock signal , MSG “plants ” a WAIT
JSYS followed by a JKST instruction in the process address space
and restarts the process at the WAIT instruction , when the
associated pending event completes , the process is started at the
JRST instruction which causes process execution to resume at the
skip return location for the pr imitive . This implementation of
the Unblock signal impacts processes in two ways: a portion of
the process a~dre~ s space is usurped by MSG for these
instructions ; and , routines in a process which respond to PSIs
and examine the PC (prog r am counter) value when the PSI occurred
(a bad practice in general) should be aware that the PC may point
to one of the planted instructions. Presently MSG uses the last
8 locations in the process address space (777770—777777) for
planting these instructions. Eventually MSG may be changed to
plant the instructions in the parameter block supplied on
pr imitive calls.

2.1.10. Messages and TENEX pages.

The TENEX t’ISG impl ementation uses TENEX pages as message buffers.
For the initial impl ementation a message must fit within a single
lEN~.X page. Subsequent implementations may permit multiple page
tnessages. All messages are stored in the buffer page beginning
at the first word in the page and are packed left—justified , 4
8—bit bytes per 36 bit word. lENEX pages contain 512 words;
therefore , the maximum message supported in the initial
impl ementation is 2048 bytes.

2.1.11. Miscellaneous

a. Single fork rISU processes.

ihere is a limitation in the current TENEX MSG implementation
whicr i requires that onl y the top fork in an MSG process
execute MEG primitives. ihis limitation may be removed in
future implementations. 

-;

_~ L~



)
TENEX MSG User Manual April 1977

2.2. TENEX MSG Calls.

2.2.1. Primitives That Create Pending Events.

2.2.1.1. SendSpecificMessage .

SendSpecificMesssage (msgarea, pnam , signal , d isp, dt , sphndl)

CALL:
0/1
l/E

Parameter Block:

E / Page Number [part of msgarea spec]
E+l/ Byte Ptr for name of destination process [pnam j
E+2/ Signal
E+3/ Return disposition [disp]
E+4/ Timeout Edt ]
E+5/ Message byte count [part of msgarea spec]
E+6/ Special handling [sphndl]

The message is assumed to begin at the first word of the page
specified by E and to be packed left—justified , 4 8—bit bytes per
36 bit word.

The types of special handling currently defined include:

0 — No special handling
Bit 28 on: Generic message

[not valid for SendSpecificMessage primitive ]
Bit 29 on: Sequenced message

[not implemented]
Bit 30 on: Stream marked message .

[not implemented ]

Possible failure dispositions include (see Appendix for codes) :

Signal given is invalid .
Handling given is invalid .
Unable to map up parameter block.
I n v a l i d  host  address in process name .
Unable to map parameter block down .
Unable to map message page in Message Send .
MSG message too long .
Destination process message queue full.
Destination name/handling — generic/specific mismatch.
Generic name not legal for destination process.

. 1

L. .~~~ .~~~~~~~~ - _ _ __ _  _ _ _ _



_____  _____________  
-- ‘

~~~~~ ____ T~~ TT~~~~~~~~~~~~

l ;N ~~c 1L,L; User ~ianuai April 1977

Had incarnation number on destination process .
Insuf ficient resources to complete primitive .

2.2. 1.2. SendGener icMessage .

SendGenericMessaqe (rnsgarea , genadr , signal , disp, dt , qwait)

CALL:
0/ 2
1/ 5

Parameter Block:

E / Page Number [part of msgarea spec]
E+l/ Byte Ptr for name of destination process [genadrj
E+2/ Signal
E+3/ Return disposition [dispi
E+4/ Timeout [dtJ
E+5/ Message byte count [part of msqarea spec]
E+6/ unused

The byte ptr in E+l points to a generic address (see Section
2.1.7). The qwait parameter is not supported in the initial
implementation.

Possible failure dispositions include (see Appendix for codes) :

Signal given is invalid .
Handling given is invalid.
Process name given is invalid .
Unable to map up parameter block.
Invalid ho3t address in process name .
Unable to map parameter block down .
Unable to map message page in Message Send .
‘ISU messaqe too long .
D e s t i n a t i o n process u n k n o w n .
D e s t i n a t i o n process messaqe queue f u l l .
Des t i n a t i o n n a m e / h a n d l i n g — g e n e r i c/ s p e c i f i c m i s m a t c h .
Ge n e r i c name not legal fo r d e s t i n a t i o n p rocess .
Bad inca r n a t i o n n u m b e r on d e s t i n a t i o n p rocess .
In s u f f i c i e n t r e sou rce s to c o m p l e t e p r i m i t i v e .
Can ’t a l l o c a t e a p rocess f o r g e n e r i c m e s s a g e .

— 7 —

-~~~~~~i ~~~~~~~~~~~~~~~~~ ~~
—- : —- -- —

:—
---‘- — -- ---

FENLX ~1StJ L~’~~~r Manual April 1977

2.2.1.3. keceiveSpecificMessaqe.

ReceiveSpecificMessage (msgarea , srcnam , signal , disp, dt ,
sphndl)

CALL:
0/ 3
1/ E

Parameter Block

E / Page Number [part of msgarea spec]
E+1/ Byte Ptr for area to return name of source process

[srcnam j
E+2/ Signal
E+3/ Return disposition [disp]
E+4/ Timeout Edt]
E+5/ Message byte count set by MSG
E+6/ Special handling set by MSG [sphndl]
E+7/ Size (in bytes) of area for source process name .
E+8/ Number of bytes of source process name returned .
E+9/ Byte ptr to first byte beyond end of source process

name returned .

If this primitive completes successfully, after the signal is
generated by MSG , the page specified in F will contain a message
which begins at the first word of the page and is packed
left—justified , 4 8—bit bytes per 36 bit word. The length of the
message in bytes is returned in E+5. MSG will return the name of
the sending process in the area specified in E+1; the size of
the area is specified in E+7. If the name is too large to fit in
this area , MSG will truncate the name .

Possible failure dispositions include (see Appendix for codes)

Signal given is invalid.
Unable to map up parameter block.
Unable to map parameter block down .
Insufficient resources to complete pr imitive.

— 8 —

-
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ::.-~~ TT 1. —. 

~TiT’Tii

TENLX MSG User Manual April 1977

2.2.1.4. ReceiveGenericMessage.

ReceiveGenericMessage (msgarea, srcnam , signal , disp, dt)

CALL:
0/4
l/E

Parameter Block:

E / Page Number [part of msgarea spec]
E+1/ Byte Ptr for area to return name of source process

[srcnam ]
E+2/ Signal
E+3/ Return disposition [disp]
E+4/ Timeout Edt ]
E+5/ Message byte count set by MSG
E+6/ unused
E+7/ Size (in bytes) of area for source process name .
E+8/ Number of bytes of source process name returned .
E+9/ Byte ptr to first byte beyond end of source process

name returned .

This pr imitive is used to recieve genericall y addressed messages.
Ot h e r w i s e , it behaves exac t ly  l ike  the Rece iveSpeci f icMessage
primitive (with the minor exception that no sphndl is associated
with a generically address message).

‘I

If the con t en t s  of E+8 is zero , the message delivered is an
“initialization message ” delivered to the process by MSG to
signal an MSG restart. (See discussion of INITCLASSJOB in
Section 3.1.4).

Possible failure dispositions include (see Appendix for codes)

Signal given is invalid .
Unable to map up parameter block.
Unable to map parameter block down .
Insufficient resources to complete primitive .

— 9 —

_ _ _  - -- —.- .— .- - -~ ~~~- -



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  — 
~~~~~~~~~~~~

TENEX MSG User Manual April 1977

2.2.1.5. SendAlarm.

SendAlarm (acode, pnam , signal , disp, dt)

CALL:
0/ 5
l/E

Paramete r Block:

E / 16 bit alarm code [acode]
E+1/ Byte Ptr for name of destination process [pnamj
E+2/ Signal
E+3/ Return disposition [disp]
E+4/ Timeout Edt]

Possible failure dispositions include (see Appendix for codes)

Signal given is invalid .
Process name given is invalid .
Unable to map up paramete r b lock.
Invalid host address in process name .
Unable to map parameter block down .
Destination process unknown .
Generic name not legal for destination process.
Bad incarnation number on destination process.
Insufficient resources to complete primitive .
Process not accepting alarms now.
Alarm already queued for process.

2.2.1.6. EnableA].arm.

EnableAlarm (acode , sr cnam , signal , disp)

CALL:
0/6
l /E

I
— 1 0 —

.-
-— .— .~~~~~ . - ~~~ I~ - .r ~‘

—
~~

—

TENEX MSG User Manual April 1977

Parameter Block:

E / 16 bit alarm code returned by MSG [acode]
E+l/ Byte Ptr for area to re turn name of sourc e proc ess

[s r cna m j
E+2/ Signal
E+3/ Return disposition [disp]
E+4/ unused
E+5/ unused
E+6/ unused
E+7/ Size (in bytes) of area for source process name .
E+8/ Number of bytes of source process name returned .
E+9/ Byte ptr to first byte beyond end of source process

name returned .

Possible failure dispositions include (see Appendix for codes):

Signal given is invalid.
Unable to map up parame ter block.
Unable to map parameter block down .
Enable Alarm already outstanding.
Insufficient resources to complete pr imitive .

2.2.1.7. OpenConn.

Openconn (conntype , connid , pnam , sign a l , disp, dt)

CALL:
0/7
1./ B

Parameter Block:

E / 16 bit connection identifier [connid]
E+l/ Byte Ptr for name of destination process Epnam l
E+2/ Signal
E+3/ Return disposition (disp]
E+4/ Timeout Idt J
E+5/ Connection type [conntype]
E+6/ Return connection desi gnator.
E+7/ Mask for PSI channel to be used to signal broken

connection or 0 for no signal.

Connection type is a 16 bit quantity which is ri ght—justified in
E+5:

820: on — Binary Pair;
830—835: Connection Size

821: on — Binary Send :

— 11 —

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _

_ — - -~~ 
-

T’~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

TENEX MSG User Manual April 1977

B30—B35: Connection Size
B22.ne 2 : on — Binary Receive :

B30—B35: Connection Size
B23: on — Server TELNET
B24: on - User TELNET

The connection designator returned in E+6 depends upon the
connection type:

Binary Send/Binary Receive : E+6/ JFN
Binar y Pair/ User TELNET: E+6/ XW D SendJFN,ReceiveJFN
Server TELNET: E+6/ TTY Designator.

If the connec tion is broken af ter it has been successfully opened
but before a C loseConn has been execu ted, MSG wi l l  signal the
user process via a PSI on the channel specified by the bit mask
in E+7.

Possible failure dispositions include (see Appendix for codes):

Signal given is invalid .
Process name given is invalid .
Unable to map up parameter block.
Invalid host address in process name .
Unable to map parameter block down .
Already have connection of that ID.
Remote site refused connection.
Destination process unknown .
Gener ic name not legal for destination process.
Bad incarnation number on destination process.
Insufficien t resources to complete primitive .
Invalid connection type.
Connection type mis—match.

2.2.1.8. CloseConn.

Closeconn (conrtid , pnam , signal , disp, dt)

CALL:
0/ 8. [=10 Octal)
1/E

Parameter Block :

E / 16 bit connection identifier [connid i
E+l/ Byte Ptr for name of destination process [pnamj
E+2/ Signal
E+3/ Return disposition (dispj
E+4/ Timeout [dtJ

— 1 2 —

_  
--- —--- —

~~~~~~~~~~~~
~-

-- ,.- — -,-- ,.. ..---. ---- ------. -. — .-.-~ ---—-~
.—-v.—-___

~~~~
__ _ .-

)
TENEX MSG User Manual April 1977

Poss ib le failure d isposit ions include (see Appendix for codes )

Signal given is invalid .
Process name given is invalid .
Unable to map up parameter block.
Invalid host address in process name .
Unable to map parameter block down .
Unknown connection.
Connection not to process named .
Destination process unknown .
Generic name not legal for destination process.
Bad incarnation number on destination process.
Insuf ficient resources to complete pr imitive .
User process closed connection.
Received a CLS for connection .
Referenced connection transaction does not exist.
Connect ion aborted .

2.2.1.9. TerminationSignal.

TerminationSignal (tsignal , disp)

CALL:
0/ 9. [=11 Octal]
l/E

Parameter Block

E / unuse d
E+l/ unused
E+2/ Signal
E+3/ Return disposition [disp]

Possible failure dispositions include (see Appendix for codes)

Signal given is invalid.
Unable to map up parameter block.
Unable to map parameter block down .
Insufficient resources to complete primitive .

_ _  
i _

1i_ 
~~~~~

-

__----i- -
~~

. . -. —‘—

ThNEX MSG User t~ianual April 1977

2.2.2. Primitives That Do Not Create Pending Events .

2.2.2.1. Stopme .

Stopme ()

CALL:
0/ 101. [=145 Octal]

2.2.2.2. Rescind .

Rescind (rsignal)

CALL:
0/ 102. [=146 Octal]
1/ Event handle (see Section 5) [rsignal]

Possible failure dispositions include (see Appendix for codes)

lnvalid Event Handle in Rescind pr imitive .
Unable to Rescind .

2.2.2.3. AcceptAlarm.

AcceptAlarms (qaccept)

ft CALL:
0/ 103. [=147 Octal]
1/ —l = true; 0 = talse [qaccept]

Note : If qaccept is false , any queued , but undelivered , alarm
will remained queued .

Poss ib le fai lure di sposi t ions include (see Appendi x for codes)

Alarm Accept code not 0 or —1.

— 14 —

.
~

TLNEX piSt~ User Manual April 1977

2 . 2 . 2 . 4 . ReSynch.

Resynch (pnam)

CALL:
0/ 104. [=150 Octal]
1/ Byte ptr to process name Lpnam]

This primitive is not supported in the current ‘IENEX
impl ementa t ion .

2 . 2 . 2 . 5 . WhoAmI .

wti oAm I

CALL:
0/ 105. [=151 Octal]
l/E

Parameter Block

E / Byte ptr for area to return generic name string for
process.

E+l/ Byte Ptr for area to return name of process
E+2/ Host address component of process name [returned right

justified]
E+3/ Host incarnation component of process name [returned

right justified]
E+4/ Instance number component of process name [returned

right justified]
5+5/ Size (in bytes) of area for generic name string .
5+6/ Number of bytes of generic name returned.
E+7/ Size (in bytes) of area for process name .
E+8/ Number of bytes of process name returned .

This primitive may be used by a process to discover its MSG
process name . The host address , host incarnation , and process
instance number components are always returned . The generic name
s t r i n g and/ or the fu l l process nam e a re re tu r n e d onl y when E+5
and/or 5+7 are non—zero.

Possible failure dispositions include (see Appendix for codes) :

Unable to map up parameter block.
Unaole to map parameter block down .

. 1
— 15 —

L -.~~ -—-- -—-....- .~~~~~~~~~~~~~~~~~~~~~~~~

- — . .

~~~~~~~~~~~~ _________

ttNEX ~~~~~~~~ uscr Manual April 1977

3. MEG User Interface.

3.1. General .

A TENEX MSG configuration is implemented as a collection of
TENEX user jobs. ALL TENEX processes which communicate via MSG
mus t execute under the control of an MSG job. There are two
types of MSG jobs. Each MSG configuration includes a single ,
“cen tral” MSG job responsible for system initialization and
interhost communication . In addition , there may be one or more
“process—controlling ” MSG jobs responsible for direc tly
controlling communicating processes. The process—controlling MSG
jobs interact with one another and the central MSG as necessary
to support process communication.

To r u n  an MSG conf i gu r a tion , a central MSG job and one or
more process—controlling MSG jobs must be created . This
initia lization may be accomplished either manually or
automatically.

3.1.1. Manual Startup .

MSG may be initialized manually by starting a central MSG
job and zero , one or more process—con trolling jobs. The J
following EXEC command sequence can be used to start a central
t’ISG job:

@G E T  M SG.SAV
@L ( E E N T E R

or

@GET MSG.SAV
@DETACH (INFILE) — (OUTFILE) — (AND) START

In the first case , the central MSG job will print initialization
i n f o r m a t i o n  i n c l u d i n g  the l i s t  of known gener i c  names and remote
host MSG con tac t  sockets .  In the second case , no such
information will be displayed since the central MSG will start up
de tached .  rhe known gene r i c  name s and remote host MSG contact
socke ts are uefined by configuration control files (see Section
3.1.4).

The central MEG will , depend ing upon internal swi tch
settings (see Section 3.1.3) and the configuration control files ,
start up various process—controlling MSG jobs.

Additional process—controlling MSG jobs can be started by
logging in , issuing the following EXE C command :

_ _  _



— .- -
~—-~ ~~~~~~~ ...:i:: ~

:-:.. ~
- ---- . , . .—,- --

rLNt ~X LISG User Manual April 1977

~RUN MSG.SAV

and interacting with MSG to specify the process class to be
supported . After the process class has been specified , the user
is g iven  the opportunity to have MSG create and start a process.
U the user chooses to have a process started , he is also given
the opportunity of specifying a debugger (DDT, IDDT, or BDDT) for
the process. If he chooses not to have a process started , then
no processes will execute under control of the job until the job
allocates one to receive a generically addressed message or the
user l a te r  e x p l i c i t l y  s t a r t s  a processvia the START command (see
Section 3 . 2 ) .

3.1.2. Automatic Startup.

MSG can be started automatically whenever TENEX is
initialized by adding MSG.SAV to the system autojob startup file.
If this is done , when TENEX is restarted , a (detached ) central
MSG job will be created and started automatically. As with
manual startup, the central MSG job will , depending upon internal
switch settings and the configuration control f i l e s , start up
various process—controlling MSG jobs.

3.1.3. Internal MSG Settings.

a. !ISG uses a number of files in its initialization and as part
of its normal operation. It expects these files to be found
in a particular , user—s pecified directory. When it is
running , MSG is connected to that directory. The MSG
uirectory can be defined by the following sequence of
commands:

@GET MSG.SAV
~~DDT

MK MS U $ G
Directory for MSG : XYZ

@SSAV E (PAGES FROM) 0 (TO) 677 (ON) MSG.SAV

b. An internal switch , called DBGSw , con trols several a~pects ofMSG operation . The switch settings are as f o l l o w s :

Bit 0: on: Use directory relative (see (a) above) sockets for
local MSG contact socket.
o f f :  Use ab so lu t e  socket  ( 2 9 . )  f o r  local MSG con t ac t
socket (requires TENEX absolute socket capability)

Bit 1: on: Top fork of central MSG job should halt on all
infer ior fork terminations (useful for debugging MSG) .

— 17 — 

.— ..- . - --—-----“~~~~~——- . -. ~~~~~~~~~~~~~~ ~~~~~~~~ - - _ _



ThNEX MEG User Manual April 1977

bit 2: on: Don ’t create local inter—MSG shared data base
( u s e f u l  for debugging MSG)

Bit 3: on: Don ’t create any process—controlling MSG jobs as
part of MSG initialization . (This overrides any
dec l a r a tion s in the gener ic  name de f i n i t ion f i l e )

Bit 4: on: Do “forced” S~ TNM to allow TE NEX to accumula te
statistics on MSG operation .

rhe folllowing settings are recommended for debugging
int.eracting processes:

DBGSW: IBO+1B3

3.1.4. Configuration Control.

There are two text files used to define MSG configurations:
the generic name tile and the network configuration file. Both
files are expected to be in the MSG directory (see 3.1.3(a)
above).

II

The generic name file serve s to define the generic process
classes known to MSG . It is named:

(SP) (SP)MSG—GENERIC—NAMES .;

when the central MSG is started , it initializes an internal
generic name table by reading the generic name file. In
addition , new name s may be added dy n a m i c a l l y  to the in te rna l
gene r i c  n ame table  by running a process—controlling MSG .

The generic name file is a text file. It consists of a list
of name def ini tions , eac h of which is a line of the form :

Name Code Create—Spec Terminate—Spec Saved—File—Name

or :

Name Code Create—Spec Host—Spec .

The f i r s t  f o r m  is used to de f i n e  loca l ly  su ppor ted
processes : “Name ” is the generic class being defined ; M Code~ is
the MSG—to—MSG internal code for the generic class (an integer
<128.) ; “Create—Spec ” specifies how generically addressed
messa ges or the class ar e to be hand led by MSG when there ~re no
outstandi ng Receive Gener icMessage pr imi tives by exis t ing
processes in the class ; “Termina te—Spec ” defines how the StopMe
pr imitive is to be handled when a process in the class executes

L I 1

— 1 8 — .~~~ 

~- --- .,- .. . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- -.-— — - --,,-- .---.------ ..—--—-- .- 

TENEX t4SU User Manual April 1977

it; “Saved—File— Name ” is the name of the saved file for the
process core image.

The seconu torni is used to define remotely implemented
processes. Here “Create—Spec ” must be the string “REMOTEJOB” ;
“Host—Spec ” is either the ARPANL’I name (a text string) or the
ARPANET address (an octal integer) for the host which supports
the process class.

Create—Spec is an expression of the form:

C Spec

or 

CSpec ,CModitier .

At present the following six CSpecs are defined :

CLASEJUB — All processes in the class are to execute in a
itNI~X job dedicated to that class.

IN1TCLASSJUB — Same as CLASSJOB with the exception that when
i’iSG is started a null generic message will be sent to a
process in the class.

MISCJOB — All processes in the class are to execute in a
‘lENEX job deuicated to “miscellaneous ” processes.

NEwJob — E~~~CI1 process in the class is to execute in a TENEX
job by ifselt.

kEMOIEJOi3 — i’rocesses in this class execute on some other
nost.

S1NGLEPRUC — At most , onl y a single process of this type may
exist at any time .

CLASSJOB ana kEMOTEJOb are the most m eaningful CSpecs when
operating in a debugging environment.

The CModitier is used to control the action taken by the
central rISU with respect to a given generic process class at
initialization time . ihe following two CModitiers are defined :

JOB — MSG is to create and start a process—controlling MSG
job for the class at initialization time . This is the
default CModitier it none is specified .

NOJOb — MSG should not create a process—controlling job for
the class at initialization time .

— 19 —

—- . , , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ — - —

~~~

-,- -—
~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— -------

~~~
- -. — .

~~ 
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ .. .

_-

-. .

TENEX MEG User Manual Apr il 1977

The NOJOB modifier would be an appropriate CModifier for NSW LFron t End (F E) processes which are started up by the NSW
dispatcher. In addition , it should be useful in a debugging
environment where it is desirable to have a process class defined
at initialization by the central MSG but run under programmer and
debugger control via a manually started process—controlling MSG .

At present the following three Terminate—Specs are defined :

KILLPROC — When the process executes StopMe , kill it (via
the TENEX KFO RX J S Y S) .

RESTARTPROC — When the process executes StopMe , assi gn a ne w
MSG process name to the TENEX fork(s) which implements
it and restart the fork at its start address.

STOPMSG - Same as KILLPROC with the exception that if no
more processes exist in the job , the
process—controlling MSG will terminate.

When a new process class is defined by running a
process—controlling MSG , CLASSJOB and KILLPROC are used as the
Create—Spec and Terminate—Spec , respectively.

The MSG network configuration file serves to specify how a
local MSG should contact other MSG5 running on remote hosts . The
name of the file is:

(SP) (SP)MSG—NETWO RK—CONFIGURATION.;

The MSG configuration file is a text file. It consists of a
list of host/ICP—contact—socket specifications , each of which is
a line of the form:

Host—Spec Socket—Spec

where Host—Spec is either the ARPANET name (a text string) or the
ARPANET address (an octal integer) for a remote host; and ,
Socket—Spec is the MSG ICP contact socket at that host (an odd
octal integer =< 37777777777) .

As part of its initialization procedure , the central MSG
looks for an MSG network configuration file. If one is found , it
is used to initialize host tables internal to MSG . The ICP
contact sockets for hosts not specified in the file are assumed
to be 35 (o c t a l) . I t no c o n f i g u r a t i o n f i l e is found and if the
central MSG job has a controlling terminal , then the user will be
asked to supply host/socket pairs. As before , the contact socket
for any hosts not specified will be assumed to be 35 (octal). If
there is no file and if MSG is running as a detached job , then

— 20 —

.—

_________________ - —.—-. - —-- —.
~
.

-

lENEX MSG User Manual April 1977

socKet 35 (octal) will be assumed to be the MSG contac t socket
for all r emote hosts.

3.1.5. MEG ERRHLTS.

An error halting (ERRHLT) mechanism is included in MSG to
facilitate debugging of MSG . As part ot its normal operation MSG
per forms a variety of internal consistency checks. If an MSG job
aetects an inconsistency, it executes an ERRHLT procedure. As
part of this procedure it prints a message which indicates the
nature of the inconsistency and where it was detected .
Persistent ERRHLT5 should be reported to the MSG implementers.

3.1.6. Abnormal Process Termination .

MSG processes normally terminate by executing the StopMe
pr imitive . Other forms of termination (e.g., execution of the
HALTF JSYS , forced termination due to an illegal instruction or
i/o data error , etc.) are regarded by MSG as abnormal. In such a
case , MSG will report the abnormal termination by printing the
process name , the process PC when the termination occurred , and
the type of termination . If a debugger for the process has been
specified (see Sections 3.1.1 and 3.2), MSG will pass control to
the debugger for the process. Otherwise , MSG will take no
further action with respect to the process until the user either
‘lERMINATES the process or attempts to debug it (via the DEBUG
command described in Section 3.2)

3.1.7. Terminating MSG Jobs.

Ine MEG Jobs comprising a TENEX MEG configuraton interact
with one another via a shared data base . It is critic al to the
operation of the MSG configuration that this data base always be
in a consistent state. To insure that this is the case , the
various jobs use a locking discipline when they modify certain
portions of the aata base .

lt is important that termination of an MSG job is done in an
orderly way that preserves the consistency of the shared data
base , if the remainder of the MSG configuration is to continue
running properly. In particular , it is not safe to type
CONTROL—C and XESEl (or LOGOUT) to terminate an MSG job (unless
the entire confi guration is to be terminated) . Doing so will
cause internal resources allocated to the job to remain allocated
to the (now) non—existant job and , in addition , it may leave
portions of the shared data base locked.

The proper way to terminate an MSG job is to use the QUIT or
RESTA HT commands (See Section 3.2) .

- 21 -

~~~~- . ---~~~~--- ~~~-
- , - -.- - -,- . . 

~~~. - . -  


______-
~ ~~~~~~~~~~~~~~ —~~~~~~~~~~~ - ,TTT T

1t~N L X MSb U s e r t’~an u a 1 April 1977

At certain critical points of its operation MSG disables
most n o r m a l i n t e r r u p t s in order to protect the shared data base .
For exampl e, CONTROL—C is disabled . If it is necessary to stop
an MEG job that is not responsive to CONTROL—C (for example ,
because it is suspected that either the MSG job or a process it
is managing is looping), the user should type CONTROL—P , the MSG
“panic ” interrupt ” . CONTROL—P stops an MSG job in a way that
will not permit the job to be restarted . For this reason ,
CONTROL—P should be used only in panic sit ~‘tions.

I i

H — 2 2 —

_ _ ~~~ -- .~~~~~~~~~~~ - - .. ~~~~~~~~~~~~~~~~~~~~~~~

c—

~~~~~~~~~~~~~~~~~~~~~~~~ ~TII ~ ‘TT~ .:~~~~~~ . ~~~~~~~~~
—---- -

TENEX MSG User  M a n u a l  A p r i l  1977

3.2. Monitoring and Controlling MSG Processes.

The TENEX MSG includes facilities that allow a user to
m or . i t o r  and c o n t r o l  process  a c t i v it y .  These f a c i l i t i e s  a r e
accessible through an MSG command language interpreter which can
be activated by typing CONTROL—S to a running MSG job. When the
command language interpreter is activated , all other activity in
the MSG job is suspended until the user either explicitly or
i m p l i c i t ly d e a c t i v a t e s  the command l a n g u a g e  i n t e r p r et e r .

The p rompt  c h a r a c t e r  tor  the MSG command l a n g u a g e
interpreter is “ > “ . Several of the standard TENEX line editing
c h a r a c t e r s  a re  a v a i l a b l e :  CONTROL—A ( c h a ra c t e r  e r a s e )  , C ONTR O L—R
(retype line), ESCAPE (complete field and prompt for parameter),
and RUBOUT (abort command line)

A list of the available commands together with a brief
description of each can be obtained by typing “?<cr> ” . This list
is printed below followed by further discussion :

ALL (Jobs)
Prints summary information on all active MSG
jobs .

C O N T I N U E
D e a c t i v a t e s  the command l a n g u a g e  i n t e r p r e te r  and
resume s n o r m a l  o p e r a t i o n  of t he  MSG j o b .

D EBUG ( P r o c e s s )  n n n
Invokes  a debugge r  f o r  the s p e c i f i e d  MSG p r o c e s s .
Takes  n u m e r i c  a r g u m e n t  of PCB # of p r o c e s s .

FORC E ( T i m e o u t  of PEs )  n n n
Forces  t i m e o u t  ot a s p e c i f i c  p e n d i n g  e v e n t  ( n n n )
or a l l  p e n d i n g  e v e n t s  ( i t  n n n  is  no t  s p e c i fi e d )

G E N E R I C
P r i n t s  i n f o r m a t i o n  a b o u t  d e f i n e d  G e n e r i c  c la s ses .

~iUS[S
P r i n t s  i n f o r m a t i o n  a b o u t  h o s t s  k n o w n  to MSG .

JOB ( S t a t u s)  L
P r i n t s  d e t a i l e d  i n f o r m a t i o n  on loca l  MSG j o b .
O p t i o n a l l y  t a k e s  n u m e r i c  a r g u m e n t  of JCB * of
a n o t h e r  MSG j o b .

L O G G I N G  (On or  O f f )
l u r n s  b i n a r y  e v e n t  l o g g i n g  on or o f f .  To g e t
text form ot log use UPDAT E command .

—~~- 3 —



- -  I2~T~~~~~~T~

ILNEX MSb User Manual April 1977

MINIMUM (Timeout as HH :MM:SS) hh :mm:ss
Prints current minimum pending event timeout and
resets it to specified value if one is given (max
of 2 4 : 0 0 : 0 0 ) .

MSGDDT
Invokes DDT for debugging MSG.

PROCESS (Status) nnn
Prints detailed information on specified MSG
process. Takes numeric argument of PCB * of
process.

QUIT
Tries to clean up local MSG job and then halts.

RECENT (User Primitives)
Prints information on recently issued user
primitive requests. Takes optional numeric
argument of max number of these to give .

RESTART (MSG)
Tries  to clean up local MSG job and then restart
it.

START (Process)
Creates and starts a process.

TERMINATE (Process) nnn
Terminates the specified process. Takes numeric
argument of PCS * of process.

UPDATE (Text Log File)
Updates text form of event log . Converts any log
entries inserted since last UPDATE command . The
name of the text log file is MSG—LOG.TXT. Its
version number will be the incarnation number of
the running MSG .

The status information printed for an MSG job includes its
Job Control Block (JCB) number (which is used internally by MSG) ,
its TENEX job number , the type of MSG job it is: either Control
(=central) ; Local (=process—controlling ) ; or Not In Use. The job
print out will flag any job that has ERRHLTed (see Section
3.1.5). The JOB command also prints the following : any
processes managed by the job , any completed pending events that
have not yet been delivered to processes , any pending generic
message control blocks (MCBs) for which a process has not yet
been allocated , and any connection control blocks (CCBs) for
d i r e c t  connec t i ons  t h a t  processes in the MSG job have created .

— 24 —

—- .,  --- . - , .  --. - -, . . -~~~~~~~~~~ ~~~~~~~~~ -~~ - --- ~~~~~~ - -. --_



-
~‘~

--
-----~~ 

- - -

~ 
- 

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ ~

__
-—--— - .r -

~~~
F~~

T E N E X  MSG User Manual Apr il 1977

The status information printed for a process includes its
Process Control Block (PCB) number (which is used internally by
MSG) , its MSG Process Name , its process state (normally Active or
Stopped), and the TENEX fork handle for the process. If the
process is controlled by the local job , then its TENEX fork
status and PC are also printed . Any pending events associated
with a process are also printed .

~&henever a process executes an MSG primitive an entry is
made in a circular buffer (the Recent User Primitive table).
This entry contains information about the call including any
associated pending event (PE). The table (in the current
impl er11entation) holds 20 entries. A print out of recently
executed user pr imitives can be obtained by the RECENT command
which prints information about tile requested number of primitives
(up to 20) in reverse chronological order. The information
printed for each pr imitive includes the time it was executed , the
type of pr imitive , its argument (contents of A d ) ,  whether the
primitive was valid (if not valid the error code is given), and
the MSG name for the executing process. If a pending event was
created (or referenced , as by Rescind ) then the PE is also g iven.

Note that as long as there is a PE generated by a process in
the Recent User Primitive table the process ’ PCB will not be
released even if the process has executed a StopMe or has been
otherwise terminated. Similarly, the JCB of the MSG job that
created the PCB will not be released. Thus “Not In Use” JCBs and
“Stopped” PCB5 will be shown by the status reporting commands
u n t i l  a l l  P5 ’s associated with them in the Recent User Primi tive
table have been released.

The i n f o r m a t i o n  p r i n t e d  for a pending event includes the PE
number , t he  type  of PE , the addressee (if any), the s t a t e  of the

• PS (usually Pending , Succeeded , Timed Out , or a n u m e r i c  E r r o r
code ), and t he type of si gnal requested by the user process.

W h e r e  a p p r o p r i a t e , information is printed for Alarm ,
Message , or Connection Control Blocks (ACBs, MCBs , or CCBs) . The
infor mation printed includes the names of sending and receiving
processos , th e Local state of the control block (Pending , Timed
Out , A bo r t e d , or Comple te d ) ,  the remo te state of the control
block (usually Pending or Complete; this may also include the
state of the transaction relative to the MSG—to—MSG protocol),
Alarm Cod e for ACE3s, and further connection infor mation for CCBs.

• MSG can he instructed to loq events of interest in a
p e r m a n e n t lo q t i l e  via the LOGGING command . This feature is
u s e f u l  in  dehug g i n~ or pe r f o r mance  mo n i t o r i n q s it u a t ions when

• more tha n the last 20 ~ri m itiv c s are of interest. The events
logged include executi on ot  p r i m i t i v e s , c r e a t i o n  of MSG ~ohs , and
crea tion of processes. Because event logging slows MSG somewhat ,
t I-i c default is LOGGING OFF .

[ 1 
- 2 5 -

.. •. .  ~~~~~~~-~~~~~~
- - .

~~~~~~~~~~~


-j _______

-
~~~ :; ~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TENEX MSG User Manual April 1977

When logg ing is ena bled , MSG main tains an even t log in a
f i le whi ch has a binary format. The UPDATE command can be used
to generate a textual version of the log . When the UPDATE
comman d is execu ted , any en tr ies  made to the b inar y log since the
last UPDATE command are converted to text form and appended to
the textual log file.

The START command may be used to create and start a new MSG
process. Before the process is started , the user has the
opportunity to specify a debugger for the process (DDT, IDDT or
BDDT) . If a debugger is specified , con trol is passed to it from
which the user may start the process. In ei ther case , the START
comman d “ completes ” by deactivating the command language
interpreter and resuming normal MSG operation by the job.

The DEBUG command invokes the debugger DDT for a specified
process. Control is passed to DDT after process status
information (including contents of its ACs, the process PC and
its execution state) is printed . The DEBUG command “completes ”
by resuming normal MSG operation of the job.

The CONTINUE command deactivates the command language
i n t e r p r e t e r  and causes normal  MSG operation by the job to resume .

The QUIT command terminates the MSG job in an orderly way
(see Sect ion 3 . 1 . 7 ) .  I t  does th i s  by t e r m i n a t i n g  all proce sses
controlled by the job , aborting any pending events associated
with the processes , and deallocating any other resources it may
be using .

The RESTART command may be used to terminate and restart an
MSG job. Its effect is equivalent to QUIT followed by RUN
MSG.SAV (see section 3.1.1)

— 26 —
— s

- - _~~~~~ _____ ~~~.



-.—•——--.-—•-- - - - -~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .1.~ ._.~__ •_~-~~~~ _ -

TENEX MSG User Manual April 1977

APPENDIX

MSG Disposition Error Codes.

The following are 16 bit error codes and are the codes that
appear in the disposition field of the parameter block associated
with various pr imitive call :

100001 Signal given is invalid .
100002 Handling given is invalid .
100003 Process name given is invalid .
100004 Unable to map up parameter block.
100005 Prim it~ive not implemented .100006 Invalid host address in process name .
100007 Unable to map parameter block down .
100010 Can ’t convert from internal proc name to str .
100101 Unable to map message page in Message Send .
100102 Message length invalid .
100103 Generic code malfunction .
100201 Alarm Accept code not 0 or —1.
100301 Enable Alarm already outstanding .
100401 Invalid Event Handle in Rescind pr imitive .
100402 Unable to Rescind .
100601 Already have connection of that ID.
100602 Unknown connection .
100603 Connection not to process named.
100604 Remote site refused connection .
140004 MSG message too long .
140101 Destination process unknown .
140102 Destination process message queue full.
140103 Destination name/handling — generic/specific mismatch.
140104 Generic name not legal for destination process.
140105 Baa incarnation number on destination process.
140301 Insufficient resources to complete command .
140401 Process not accept ing a l a r m s  now .
140402 Alarm already queued for process.
140501 lhat generic class not supported here.
140502 Can ’t allocate a process for generic message .
l4~ 60l User process closed connection .
140603 Received a CLS for connection .
140604 lnvalid connection type .
140605 Remote process name mis—match.
140606 Referenced connection transaction does not exist.
140611 Connection type mis—match.
140612 Connection aborted .



- ~~~~~~~~~~ .~~~~~~~~~~ 
—

~~~~~
- -—-

. --

ILNE X MSG u ser i~I an u a l Apr i l 1977

Other values for the disposition field include:

0 Success disposition.
2 Timed out.
3 Error in delivery of message .
4 Must resynch message stream .
5 P r i m i t i v e aborted by user process.

~~28-

